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Overview

ShrinkBench:
Open source library to facilitate development and  standardized 
evaluation of neural network pruning methods

• Rapid prototyping of NN pruning methods

• Makes it easy to use standardized datasets, pretrained 
models and finetuning setups

• Controls for potential confounding factors



• Pretrained networks are often quite accurate but large
• Pruning: Systematically remove parameters from a network
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Neural Network Pruning



• Goal: Reduce size of network 
as much as possible with 
minimal drop in accuracy  

• Often requires finetuning 
afterwards
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Neural Network Pruning
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Traditional Pipeline

Need a whole pipeline for performing experiments
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Pruning 
Algorithm Finetuning Evaluation
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Traditional Pipeline

Data 
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Pruning 
Algorithm Finetuning Evaluation

But only the pruning algorithm usually changes



But only the pruning algorithm usually changes
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Traditional Pipeline
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ShrinkBench

Library to facilitate standardized evaluation of pruning methods
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ShrinkBench

• Provides standardized datasets, pretrained models, 
and evaluation metrics

• Simple and generic parameter masking API

• Measures nonzero parameters, activations, and FLOPs

• Controlled experiments show the need for 
standardized evaluation
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Towards Standardization

But how do we standardize?

• Standardized datasets. 
Larger datasets (ImageNet) will be more insightful than smaller ones (CIFAR10)

• Standardized architectures
Crucial to match complexity of the network with complexity of dataset/task

• Pretrained models
This can be a confounding factor so it’s important to use the same

• Finetuning setup
We want improvement coming from pruning not just better hyperparameters



But how do we standardize?

• Standardized datasets. 
Widely adopted datasets, representative of real-world tasks

• Standardized architectures
With reproducibility record, matched in complexity to the chosen dataset

• Pretrained models
Even for a fixed architecture and dataset, exact weights may affect results

• Finetuning setup
We want improvement from pruning, not from better hyperparameters
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Towards Standardization
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Towards Standardization

But how do we standardize?

• Standardized datasets. 
Widely adopted datasets, representative of real-world tasks

• Standardized architectures
With reproducibility record, matched in complexity to the chosen dataset

• Pretrained models
Even for a fixed architecture and dataset, exact weights may affect results

• Finetuning setup
We want improvement from pruning, not from better hyperparameters
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Masking API

We can capture an arbitrary removal pattern using binary masks

Model (+ Data) Pruning Masks 
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Masks→Accuracy

Given a pruning method in terms of masks, ShrinkBench finetunes 
the model and systematically evaluates it

Pruning Masks 
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ShrinkBench Results I

• ShrinkBench returns both compression & speedup 
since they interact differently with pruning

Model Compression Speedup
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ShrinkBench Results II

• ShrinkBench evaluates with varying compression and 
with several (dataset, architecture) combinations
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ShrinkBench Results II

• ShrinkBench evaluates with varying compression and 
with several (dataset, architecture) combinations
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ShrinkBench Results III

• ShrinkBench controls for confounding factors such as 
pretrained weights or finetuning hyperparemeters



• ShrinkBench – an open source library to facilitate 
development and standardized evaluation of neural 
network pruning methods

• Our controlled experiments across hundreds of models 
demonstrate the need for standardized evaluation.
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Summary

https://shrinkbench.github.io


