Heart Sound Classification Based on Temporal Alignment Techniques
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Introduction Dynamic Time Warping Intra-patient Variability D TW Robustness

* PhysioNet/CinC 2016 Challenge: automatically classify heart sound recordings

= - . * Kernel density estimates
collected from both clinical and nonclinical environments

are computed to assess
the robustness of D TWV-
based features to inter-
population differences

* DTW to compare intra- and inter-subject morphology of heart sounds * Cardiac conditions may manifest by higher than usual variability in heartbeat
shape and frequency

* DITW has obtained good results in the past in the doman of ECG
classification3* * Jo capture intra-patient variability, DTW distance I1s computed for each
combination of heartbeats
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* We explore temporal alignment techniques, in particular dynamic time warping
(DTW), to address inter-patient and inter-population differences

* DTWe-based features effectively reduce interpatient variabllity and bias from
heterogeneous data collection environments

Kernel Density Distribution

 DTW based features
consistently reduce inter-
populational variability,
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* Feature Engineering — Features pertaining to time intervals, spectral analysis and Average Medoid DTW
morphology are extracted from the segmented records . . . . . "
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* This set of features includes also Systole and Diastole in addition to S| and S2

* Mel-Frequency Cepstral Coefficients are computed for each heart sound cycle « For each population and class, spectral clustering is performed using the

§ § representative heartbeats of each recording. | | | | | o
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* The logarithmic filterbank has higher resolution on low frequencies
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Medoid heartbeat in a sample recording * DTW distances between templates and heartbeats are computed

* The MFCC mean and standard deviation of each record capture variability
within each filterbank interval
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