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Example: Voice Monitoring

Method

• Voice disorders affect 7% of the US population

• Data collected with neck-placed accelerometer

• 52 patients with vocal fold nodules & 52 controls

• Segment signal into fixed length windows 

• Compute time-frequency representation

• Unsupervised feature extraction using autoencoder

• LR model on learned features with subject labels

• Aggregate prediction using % positive windows

• Previous work relied on expert driven features[1]

Classification Results

AUC Accuracy

Expert
Train 0.70 ± 0.05 0.71 ± 0.04

Test 0.68 ± 0.05 0.69 ± 0.04

Ours
Train 0.73 ± 0.06 0.72 ± 0.04

Test 0.69 ± 0.07 0.70 ± 0.05

Voice Usage Results

We automatically learn useful  
features for large time series data, 
reducing the need for laborious 
task-specific feature engineering.

Comparable  
performance 
without 
task-specific 
feature 
engineering!

• Often few subjects and large amounts of data
→ Easy to overfit to subject-specific traits

• No obvious mapping from signal to features
→ Feature engineering is labor intensive

• Usually, we only have subject-level labels
→ In many cases, no way of getting annotations

Task: Classifying between patients and controls

Task: Does the amount of vocalization 
impact patients & controls differently?

• We answer that using the same learned features

• Predict recent voice utilization from windows

• Statistically significant difference between 
predictions for patients and controls (p = .04)

Challenges


