

Medical Time Series

Challenges

- Often few subjects and large amounts of data \rightarrow Easy to overfit to subject-specific traits
- No obvious mapping from signal to features \rightarrow Feature engineering is labor intensive
- Usually, we only have subject-level labels \rightarrow In many cases, no way of getting annotations

Example: Voice Monitoring

- Voice disorders affect 7% of the US population
- Data collected with neck-placed accelerometer
- 52 patients with vocal fold nodules & 52 controls

1 week = ~4 billion samples/subject

Learning from Few Subjects with Large Amounts of Voice Monitoring Data

Jose Javier González Ortiz

We automatically learn useful features for large time series data, reducing the need for laborious task-specific feature engineering.

Method

- Segment signal into fixed length windows
- Compute time-frequency representation

Unsupervised feature extraction using autoencoder

- Prediction • % Positive

This research program is supported by the Voice Health Institute, the NIH National Institute on Deafness and Other Communication Fellowship.

Classification Results

Raw Wavefor opectrogram

		AUC	Accuracy
Expert	Train	0.70 ± 0.05	0.71 ± 0.04
	Test	0.68 ± 0.05	0.69 ± 0.04
Ours	Train	0.73 ± 0.06	0.72 ± 0.04
	Test	0.69 ± 0.07	0.70 ± 0.05

Voice Usage Results

[1]. Marzyeh Ghassemi et al. Learning to detect vocal hyperfunction from ambulatory neck-surface acceleration features: initial results for vocal fold nodules. IEEE Trans. Biomed Engineering

John V. Guttag Robert E. Hillman Daryush D. Mehta Jarrad H. Van Stan Marzyeh Ghassemi

Task: Classifying between patients and controls

• LR model on learned features with subject labels Aggregate prediction using % positive windows • Previous work relied on expert driven features^[1]

> Comparable performance without task-specific feature engineering!

Task: Does the amount of vocalization impact patients & controls differently?

• We answer that using the same learned features

Predict recent voice utilization from windows

• Statistically significant difference between

predictions for patients and controls (p = .04)

josejg@mit.edu