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Abstract

As datasets and models become increasingly large, distributed training has become a
necessary component to allow deep neural networks to train in reasonable amounts of time.
However, distributed training can have substantial communication overhead that hinders its
scalability. One strategy for reducing this overhead is to perform multiple unsynchronized
SGD steps independently on each worker between synchronization steps, a technique known
as local SGD. We conduct a comprehensive empirical study of local SGD and related methods
on a large scale image classification task. We find that performing local SGD comes at a price:
lower communication costs (and thereby faster training) are accompanied by lower accuracy.
This finding is in contrast from the smaller-scale experiments in prior work, suggesting that
local SGD encounters challenges at scale. We further show that incorporating the slow
momentum framework of Wang et al. (2020) consistently improves accuracy without requiring
additional communication, hinting at future directions for potentially escaping this trade-off.

Keywords: Deep Learning, Distributed Optimization, Local SGD, Convolutional Neural
Networks

1. Introduction

As datasets and models continue to grow in size, it has become a common practice to train
deep neural networks in a distributed manner across multiple hardware workers Goyal et al.
(2017); Shallue et al. (2018). Most deep learning models are currently optimized using some
variant of stochastic gradient descent Robbins and Monro (1951), often using a mini-batch
approach Bottou (2010); Dekel et al. (2012). In distributed scenarios, the communication
overhead necessary to synchronize gradients between workers can quickly dominate the time
necessary to compute the model updates, hindering the scalability of this approach. Moreover,
because of the serial nature of neural network training, all the nodes must wait until the
synchronization completes, and performance is therefore dependent on the slowest node Dutta
et al. (2018); Ferdinand et al. (2020).

These issues have motivated the development of optimization algorithms that reduce the
amount of communication between workers. A simple yet practical example is local SGD (closely
related to federated averaging (McMahan et al., 2017)), where, instead of synchronizing the
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Figure 1: Breakdown of the average wall-clock time per iteration during the training process.
Results are reported for various numbers of workers (K) and numbers of local steps (H). Every
node has 8 workers. The main difference is the communication time, which decreases as we
reduce the frequency of model averaging. For minibatch SGD (which we label as H=1) with
multiple nodes (K>8), the communication time dominates other parts of training.

gradients at every iteration, each worker performs multiple SGD steps locally and then averages
the model weights across all workers Zhang et al. (2016). Local SGD has been shown to have
good optimization properties from a theoretical standpoint Stich (2018); Zhang et al. (2016);
Woodworth et al. (2020). However, while local SGD does speed up training, the resulting models
are often less accurate compared to a synchronous minibatch SGD baseline (Lin et al., 2018).

Post-local SGD is a variant of local SGD introduced by Lin et al. (2018) with the goal
of remedying these problems. Post-local SGD divides training into two phases. In the first
phase, workers perform synchronous minibatch SGD; in the second, they switch to local SGD.
Lin et al. claim that this approach generalizes better on large batch training than both local
SGD and minibatch SGD while reducing communication for the second phase of training. The
majority of the analysis of local SGD and post-local SGD reported in Lin et al. (2018) is on
CIFAR-10 Krizhevsky et al. (2009).

Motivated by these results, we perform a thorough analysis of local SGD and post-local
SGD on the ImageNet-1k Russakovsky et al. (2015) classification task, a de facto benchmark
for large-scale vision classification problems. As Figure 1 shows, inter-node communication
can dominate training time, becoming a bottleneck in the training process. We complement
the analysis of Lin et al. (2018), studying how the choice of learning rate schedule and the point
at which to switch phases affect the generalization accuracy of models trained with post-local
SGD. We find that post-local SGD at ImageNet-scale is a double-edged sword: decreases in
communication costs (by increasing the number of local steps) are accompanied by decreases
in accuracy. As a result, practitioners interested in post-local SGD must weigh the trade-offs
between training speedup and reduction in the accuracy of the final model. Looking ahead,
our analysis of the interaction between post-local SGD, learning rates, and momentum points
toward potential opportunities to escape these trade-offs.

Contributions. Our main contributions are as follows:

1. We perform a comprehensive empirical study on ImageNet that identifies previously
unreported scalability limitations of local and post-local SGD. Our analysis highlights
how, when compared to the fully synchronous baseline, local and post-local SGD suffer
from non-trivial accuracy drops as workers or local steps increase.
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2. Our analysis is the first to identify that post-local SGD performance heavily relies on
the choice of hyperparameters, including learning rate schedule and switching point.

3. We show that using slow momentum Wang et al. (2020) together with post-local SGD
achieves a better quality-performance trade-off.

4. We show that switching to local SGD has a regularization effect on optimization that
is only beneficial in the short term, suggesting it is always better to make the switch
later in training.

2. Background and Related Work

Minibatch SGD. Neural networks are typically trained with minibatch SGD. In minibatch
SGD, the dataset D={(xi,yi)}i∈[N ] is divided into non-overlapping subsets of size B known as
minibatches. Gradient descent is performed sequentially on these minibatches, passing through
the entire dataset over the course of an epoch. The dataset is typically randomly shuffled
before each epoch, meaning the minibatch composition and order are different on each pass
through the dataset. See Algorithm 1 below for full details. In practice, networks are often
trained in a distributed data-parallel fashion across K workers Li et al. (2020). Each worker
has a separate copy of the weights and computes gradients using a disjoint subset of the data.
The entire dataset is reshuffled and split among workers at the beginning of every epoch. After
the backward pass, gradients are averaged across workers before updating the model weights.

Local SGD. In local SGD, described in Algorithm 2, the workers update the local copies
of their weights, and every H>1 iterations they synchronize the weights across workers by
averaging the weights stored on each worker. Papers on local SGD typically credit McDonald
et al. (2009), Zinkevich et al. (2010) and McDonald et al. (2010) with pioneering local SGD
in pre-deep learning settings; these works train models to completion and average the final pa-
rameters. Zhang et al. (2016) explore local SGD with periodic averaging of models throughout
training; they prove that it converges in convex settings (in fact, faster than minibatch SGD)
in the face of gradient variance and show that it can optimize a LeNet-5 network on MNIST.
Povey et al. (2014) and Su and Chen (2015) use local natural gradient descent with periodic
synchronization to optimize deep models. Kamp et al. (2018) synchronize updates among
neighboring workers using a gossiping protocol. Zhou and Cong (2017), Stich (2018), Wang
and Joshi (2018b), Yu et al. (2019), and Woodworth et al. (2020) prove convergence properties
of local SGD under various technical assumptions. Zhou and Cong (2017) experiment on
CIFAR-10 and show that accuracy drops off if synchronization occurs too infrequently. Wang
and Joshi (2018a) start with infrequent averaging and then increase the communication over
the course of training. Periodic model averaging also takes place in federated learning, which
focuses on performing SGD in settings where data is distributed across many devices and a
model can only be updated on the device where the data resides. McMahan et al. (2017), who
initiated this research literature, perform parallel SGD between devices with synchronization
on every step, although they explore synchronizing after many iterations. Local SGD is
common in federated learning systems for performance reasons (Smith et al., 2017).

Post-local SGD. Post-local SGD (Lin et al., 2018) is a hybrid in which training occurs
synchronously for the first part of training and switches to local SGD later in training. Post-
local SGD involves performing synchronous SGD for the first T steps of training and local
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Algorithm 1 Minibatch SGD with learning rate schedule γ(t), batch size B, initial weights
w0, and loss `.

1: S←dNB e (iterations per epoch)

2: for each epoch e do

3: Shuffle dataset D={xi,yi}i∈N
4: for each iteration m in 1 to S do

5: t←eS+m (the current step of training)

6: o←(m−1)B

7: wt←wt−1−γ(t) 1
B

∑B
i=1∇`(f(xo+i;wt),yo+i)

Algorithm 2 Local SGD with learning rate schedule γ(t), batch size B, initial weights w0,
loss `, and R workers.

1: S←d N
BK e (iterations per epoch)

2: for each epoch e do

3: Shuffle dataset D={xi,yi}i∈N
4: for each iteration m in 1 to S, at worker k (in parallel) do

5: t←eS+m (the current step of training)

6: o←(m−1)B+(k−1)SB

7: w
(k)
t ←w

(k)
t−1−γ(t) 1

B

∑B
i=1∇`(f(xo+i;wt),yo+i)

8: if t mod H=0 then

9: w
(k)
t ← 1

K

∑K
k=1w

(k)
t (synchronize)

SGD thereafter. The hyperparameters may differ between the synchronous and local phases.
For example, the local phase may use a different learning rate or batch size. Lin et al. suggest
post-local SGD as a replacement for standard, synchronous, large-batch training schemes that
“significantly improves the generalization performance.”

Other approaches for reducing communication costs include using gradient compression to
reduce the size of updates (Alistarh et al., 2017; Wen et al., 2017; Bernstein et al., 2018; Karim-
ireddy et al., 2019; Vogels et al., 2019) and modifying the communication patterns between nodes
Lian et al. (2017, 2018); Assran et al. (2019), often by introducing approximation or asynchrony.

3. Experimental Setup

Our aim in this work is to experimentally investigate the performance of post-local SGD and
the related methods on a large-scale distributed training workload. Here, we describe the exper-
imental setup for the experiments. Further implementation details are listed in Appendix A.4

Dataset. We focus on the computer vision task of image classification on the ImageNet
dataset (Deng et al., 2009; Russakovsky et al., 2015). This is a 1000-way classification task
with∼1.28 million training images. Performance is evaluated by top-1 error on 50,000 held out
validation images. For the training examples, we follow the standard channel normalization
and data augmentation scheme as in He et al. (2016b) and use the default training and
validation splits from Russakovsky et al. (2015).

Models. We use the ResNet-50 and ResNet-101 architectures (He et al., 2016a). We
initialize the weights as in He et al. (2015) and incorporate the modifications described in
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Goyal et al. (2017) for initializing the fully connected layer and the last Batch Normalization
layer of the residual blocks. We use L2 weight decay with λ=10−4.

Training. Following recommendations from Goyal et al. (2017), we scale the learning
rate linearly with the global batch size according to η=KB0.1/256, where K is the number
of workers and B is the per-worker batch size, which is set to 32. In addition, we apply a
learning rate warm-up strategy that starts from 0.1 and linearly increases the learning rate
every iteration during the first five epochs of training so that the target learning rate η is
reached at the end of the fifth epoch. All experiments are trained with Nesterov momentum
(Nesterov, 2013) with β=0.9. We also apply momentum correction as described in Goyal et al.
(2017) to stabilize training whenever the learning rate value is modified. Unless mentioned
otherwise, we use a step-wise learning rate schedule that decays the learning rate by a factor
of 10 at the end of the 30th, 60th and 80th epochs, as in He et al. (2016a).

Local SGD. For local SGD and post-local SGD, we average the model weights of all the
workers before computing the validation performance at the end of every epoch. This model
average is performed outside of the training process. We consistently found that averaging
the models before computing validation was beneficial to generalization performance. For
post-local SGD, before the switch to local SGD is performed, we average the gradients and
not the model weights. During the post-local SGD regime the per-worker momentum buffers
are kept local and not synchronized, this is a common approach Lian et al. (2017); Assran
et al. (2019); Wang et al. (2020).

4. The Benefits of (Post-)Local SGD

While local SGD undoubtedly reduces communication and thus overall runtime, the specific
speedup varies from task to task. In this section we illustrate the scalability challenges of
minibatch SGD in distributed settings and show that local SGD and post-local SGD achieve
substantially better performance by reducing communication. To reduce the effect of run-to-
run variation, we execute ten independent runs (seeds) and report the median performance
values. We consider local SGD where the model is averaged every H steps from the beginning
of training and post-local SGD with a switching point at the first learning rate decay (epoch
30) as suggested in Lin et al. (2018).

Local SGD reduces communication overhead. The main performance cost of scaling
minibatch SGD to a distributed setting is the communication overhead to synchronize gradients
before updating model weights at every iteration. If this overhead is comparable to the other
parts of training, the training process will be significantly slowed down, leading to reduced
performance. We show that, for the classification task considered on a 10 Gb/s Ethernet
interconnect connection, the performance benefits of local SGD are substantial.

Figure 1 presents a breakdown of the running times of different parts of the training loop
for a variety of settings. Communication time refers to performing an all-reduce to average
the weights across all workers. As expected, all except for the communication time stay
approximately constant for different numbers of workers. For a single node, i.e., 8 GPUs, the
communication time is quite low, indicating that intra-node communication is negligible with
respect to other parts of training. However, for multi-node minibatch SGD (H=1 and K>8
in the figure), the communication time dominates the other steps as the number of workers
K increases. On the other hand, for local SGD (H>1 in the figure) as we increase the number
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Figure 2: Total time in hours as a function
of the number of workers for local SGD and
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Figure 3: Normalized Speedup of local and
post-local SGD for a given world size. I.e., the
ratio between the time per epoch for local SGD
and the corresponding minibatch SGD.

of local steps H the communication overhead is amortized over several iterations, leading to
a reduced iteration time.

Local SGD scales to large distributed settings. While we see that communication
overhead is a large fraction of the time per iteration in Figure 1, we also observe that the
communication time is not proportional to the number of workers. Consequently, despite
the introduced communication overhead when going from single-node to multi-node training,
we should observe good scalability trends as we increase the overall number of workers. This
is depicted in Figure 2, where the total time, in hours, to complete 90 epochs of training a
ResNet-50 is presented for local and post-local SGD for different numbers of workers and local
steps. The approximately linear trends indicate that we can successfully make use of additional
nodes to achieve reduced training times without running into other performance bottlenecks.
In general, we observe that in both minibatch SGD (indicated as H=1 in Figure 2) and local
SGD, doubling the number of workers halves the time taken to run an epoch. Whereas for
minibatch SGD going from a single node to multiple nodes (i.e., 8 to 16 workers) has an effect on
running time, local SGD shows better scalability asymptotically approaching linear speedup.

Reducing communication is effective but has diminishing returns. While we
observed overall training time reductions, it is still unclear what specific speedup reducing
communication is accounting for. To measure the contribution of local SGD, we normalize
times when H>1 by the time for H= 1 with the same number of workers, resulting in the
normalized speedup shown in Figure 3. This normalized speedup corresponds to the speedup
obtained by using local SGD with H > 1 relative to using H = 1 (i.e., synchronizing every
iteration, equivalent to minibatch SGD) with the same number of workers. With more than
one node (K>8), local SGD provides a substantial speedup. For instance, 32 or 64 workers
communicating every 4 or 8 local steps leads to relative speedups close to 1.75 and 2 respectively.
However, as we keep increasing the number of steps between synchronizations, the speedup
increases with diminishing returns since the amount of synchronizations decays exponentially.

5. Trade-offs of (Post-)Local SGD

5.1 Trade-offs of local model updates

The measured speedup benefits of reducing communication during the training process suggest
that (post-)local SGD presents an opportunity to substantially reduce training times. As such,
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Figure 5: Validation Accuracy as a function
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refer to experiments with the same number of
local steps H between model averages. mSGD
corresponds to the minibatch SGD baseline.

we now analyze the effect on generalization of these techniques to understand whether this
performance comes at a cost. We explore the scalability of both local SGD and post-local SGD
(switching at epoch 30 unless otherwise noted) as we increase the total number of workers (i.e.,
GPUs) and as we increase the number of local steps between model averaging. We further
study varying the amount of communication of post-local SGD by changing the switching
point between the phases. We show that on ImageNet-1k, local SGD and post-local SGD
struggle to scale in any of these axes without causing a drop in validation performance.

Increasing the number of workers. Our first analysis focuses on the trade-off between
increasing the number of workers and the effects on generalization as measured by the decrease
in validation accuracy. We find that increasing workers has a negative effect on accuracy for
both local and post-local SGD, consistently leading to worse training and validation results.
Figures 4 and 5 show training and validation accuracy as the number of workers increases.
We include results for various numbers of local steps. Neither local SGD nor post-local SGD
maintain accuracy as the number of workers increases. Although post-local SGD experiences
smaller absolute drops in accuracy compared to local SGD, this comes at the expense of more
communication and consequently more runtime. The loss in accuracy seems to be a direct
result of the optimization mechanics of local SGD, since the minibatch baseline does not
experience this trade-off as the number of workers increases.

Reducing synchronization frequency. As we saw from the earlier timing results,
reducing the frequency of synchronizations is the main mechanism that local SGD has for
reducing the communication overhead. Here, we investigate the effect of increasing the number
of local steps between model averaging synchronizations, identifying a very similar trade-off
to increasing the number of workers. Figures 4 and 5 show training and validation accuracy
for varying numbers of local steps H for local and post-local SGD. For both methods, as the
number of local steps grows larger, training and validation accuracy monotonically decrease.

Towards a unified trade-off. We showed that increasing the number of workers K or
local steps H led to lower accuracy. Interestingly, neither of these factors was clearly dominant
and the absolute drop in training and validation accuracy is similar as we increase either of
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them. We show that this phenomenon can be better viewed in terms of a different statistic:
total number of local model updates between synchronizations, i.e., the product K×H.

Both of the factors K and H affect the optimization mechanics. As we increase the number
of workers, K, the global batch size linearly increases because every worker has a fixed local
batch size. Consequently, since the number of epochs is fixed, the total number of model
updates decreases by the same factor. In local SGD models are averaged after H local steps.
While model averaging usually leads to better performance, it depends on how much the local
models have diverged since the last synchronization.
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Figure 6: Validation Accuracy as a function of the
number of local model updates (H×K) for local
SGD (left) and post-local SGD (right). mSGD
values correspond to the minibatch SGD baseline.

Figure 6 shows validation accuracy as
a function of the product H×K. We found
the same pattern holds for training accu-
racy (see Figure 12 in the Appendix). When
viewed this way, we can observe that the
trade-off curves for different numbers of
workers and frequencies line up for both
training and validation. This suggests that
the main factor influencing final model qual-
ity is the total number of local model up-
dates between synchronizations. Conse-
quently, to maintain model accuracy, an
increase in the number of local steps should
be matched with a proportional decrease
in the number of workers and vice versa.

5.2 The effect of hyperparameters

The post-local switching point poses a trade-off. Post-local SGD divides training into
two phases. In the first phase, workers perform synchronous minibatch SGD; in the second,
they switch to local SGD. However, the iteration at which to switch is another hyperparameter
that affects the amount of communication; here, we study whether it also affects final accuracy.
We find that the switching point presents a trade-off between training time and final accuracy,
with later switching points improving accuracy at the cost of additional communication.

Up to this point, all the reported experiments switched to local SGD at epoch 30 out of
90. This is when the first learning rate decay happens with a step-wise schedule with decays
at epochs 30, 60 and 80 (as recommended by Lin et al. (2018)). However, switching earlier
can reduce the amount of communication. Conversely, previous results showed consistent
improvements from local SGD to post-local SGD and, since local SGD can be thought of as a
post-local SGD with a switching point at epoch 0, we also explore whether we can recover the
lost model accuracy by switching at a later point.

To study this phenomena, we select switching points at epochs where the learning rate
decreases (30, 60 and 80) and intermediate epochs (15, 45, 75, and 85). Figure 7 depicts these
results for both ResNet-50 and ResNet-101 for various numbers of local steps. Both networks
present similar patterns for the chosen values of switching points. Notably, the learning rate
decay points seem to have a significant positive effect into the final performance for this task.

8



Trade-offs of Local SGD at Scale: An Empirical Study

0 30 60 80 90
Switch to Local SGD [Epoch]

72

74

76
Va

lid
at

io
n 

Ac
c.

 (%
)

ResNet-50

0 30 60 80 90
Switch to Local SGD [Epoch]

74

75

76

77

ResNet-101

mSGD
H=2
H=4
H=8

mSGD
H=2
H=4
H=8

Figure 7: Validation accuracy for post-local
SGD with step-wise learning rate schedule as
a function of the epoch when the switch to
local SGD is done. Results are for K = 64
workers and various numbers of local steps H.
mSGD is the baseline minibatch SGD method,
synchronizing at every update.

0 25 50 75
Switch to Local SGD [Epoch]

73

74

75

76

Va
lid

at
io

n 
Ac

c.
 (%

)

ResNet-50

0 25 50 75
Switch to Local SGD [Epoch]

75

76

77

ResNet-101

mSGD
H=2
H=4
H=8

mSGD
H=2
H=4
H=8
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to local SGD is done. Results are for K=64
workers and various numbers of local steps H.
mSGD is the baseline minibatch SGD method,
synchronizing at every update.

Post-local SGD performance heavily depends on learning rate schedule. One
unexplored aspect of post-local SGD is the interaction between the switching time heuristic
and the choice of learning rate schedule. Here, we investigate how the choice of learning rate
schedule affects the generalization results of post-local SGD. Recently, learning rate schedules
other than step-wise, such as cosine annealing, have gained popularity due to the competitive
results they provide without having to carefully specify the learning rate decay points (He et al.,
2019; Radosavovic et al., 2019). As an alternative to the step-wise schedule, we consider a
half-period cosine schedule which sets the learning rate to ηt=η0(1+cos(π ·t/(Tmax))/2, where
η0 is the initial learning rate, t is the current epoch, and Tmax is the total number of epochs.
As with the step-wise schedule, we modify the cosine schedule to have a linear warm-up phase
updated every iteration over the first five epochs of training. The learning rate is updated at
the end of every epoch except for the warm-up phase, when it is updated at every iteration.

Figure 8 presents a trade-off analysis of how the switching point affects the final training
accuracy of the model with a half cosine learning rate schedule. Unlike before, we see a more
monotonic trade-off between the final validation accuracy and when the switch to local SGD
is performed. When compared to Figure 7, the results in Figure 8 indicate that the scale of
the learning rate when the switch to local SGD is performed is crucial to ensure that the drop
in validation accuracy is minimal.

5.3 Post-local SGD behavior depends on the task scale

Post-local SGD was proposed as a way to remedy the generalization gap present in large batch
training Chen and Huo (2016); Keskar et al. (2016); Hoffer et al. (2017); Shallue et al. (2018).
However, our observations do not align with the generalization improvements identified by
Lin et al. (2018) for ResNet-20 on CIFAR-10 for increasing values of K and H even when
exploring different switching points. We found similar patterns for a downscaled version of the
previously presented experiments. We performed analogous experiments on TinyImageNet, a
dataset which comprises a subset of ImageNet at a lower resolution, using a ResNet-50 (with
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slight modifications to work on the smaller dataset). Figure 9 shows that post-local SGD
(when performed after the first learning rate decay point) does produce accuracy gains with
respect to the synchronous minibatch baseline. This contrasts with our ImageNet experiments,
where little to no accuracy gains are achieved when switching to local SGD during training.
We have thus identified an example where distributed optimization behaves differently for
tasks of different scales.

We note that our ImageNet results are not directly comparable to the results of Lin et al.
(2018) on ImageNet since we do not use the LARS optimizer (You et al., 2017) for the main
body of experiments; we use SGD with Nesterov momentum instead. To ensure that choice of
optimizer is not a confounding factor in this analysis, we performed analogous experiments
using LARS and the results are included in Figure 13 in the Appendix. Our analysis indicates
that post-local SGD + LARS suffers from a similar trade-off. When switching to local SGD
in the early phase of training, final model accuracy drops with respect to the minibatch
baseline. In contrast, we do see that LARS trade-off is more linear and provides some accuracy
improvements when the switch occurs later in training.

6. Shifting the Trade-off with Slow Momentum

We have identified several trade-offs of local and post-local SGD in terms of training time and
model accuracy. We now explore modifying the optimization process as a way to mitigate the
drop in performance that local-SGD and post-local SGD experience, arriving at better trade-off.
To that end we make use of the slow momentum (SlowMo) method Wang et al. (2020), which
builds on top of the BMUF method (Chen and Huo, 2016) by generalizing local SGD in a way
similar to how SGD with momentum generalizes SGD. In particular, the slow momentum
algorithm works by adding an additional momentum update after model averaging steps.
SlowMo consistently provided improvements when incorporated into algorithms with reduced
communication, including local SGD and other decentralized algorithms. SlowMo does not
require additional communication since the model averages provide enough information to
compute the slow gradients and perform the update.

We evaluate SlowMo on top of local SGD and post-local SGD with switching points at 15
or 30 epochs. Figure 10 shows that adding the slow momentum updates leads to improved
validation accuracy in all cases. Incorporating SlowMo at the switching point at epoch 15 leads
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Figure 11: Training Loss (first column), Training Error (second column) and Validation Error
(third column) for post-local SGD experiments with different switching points T and number
of local steps H=4. Top row corresponds to step-wise learning rate schedule with decays at 30,
60 and 80 epochs. Bottom row corresponds to a half cosine schedule. For a given number of
local steps, regardless of when the switch to local SGD is performed, the loss and error curves
follow the same general trajectory. We found this pattern consistently across different models,
numbers of workers and numbers of local steps.

to noticeably better accuracy, outperforming the local SGD case and inverting the behavior
previously seen. Although SlowMo is not able to fully bridge the accuracy gap compared to
synchronous minibatch SGD, it does mitigate the drop by reliably boosting performance for
different settings.

7. The Effect of Local SGD on Generalization

Up to this point, our analysis has focused on the accuracy achieved by post-local SGD. However,
the best validation accuracy of the model might not be representative of how local SGD and
post-local SGD affect the optimization of the model over the course of training. Here, we
study how the loss and the errors evolve over time for different switching points revealing that
switching to local-SGD has a regularization effect regardless of when it is performed. We show
that switching to local SGD has a regularization effect on optimization that is only beneficial
in the short term, suggesting it is always better to make the switch later in training.

In Figure 11 we plot the training loss, top-1 training error and top-1 validation error for
post-local SGD for various switching points. T = 0 corresponds to local-SGD and T = 90
corresponds to the minibatch baseline. We observe a regularization effect when the switch
to local SGD is performed for the post-local SGD method: the training error is higher than
the minibatch baseline while the validation error is lower. Results are for 64 workers and
4 local steps between model averages but we found these patterns consistently for different
numbers of workers and number of local steps. More interestingly, after the switching point,
the curves’ various post-local SGD models closely follow the same trajectory for both training
and validation metrics. This pattern holds for both learning rate schedules although it is more
noticeable for the half cosine learning rate schedule because of the higher absolute change.
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If we now consider these results along with the earlier analysis that looked at the final
validation accuracy, we can conclude that, despite the switch to local-SGD improving general-
ization in the short term, the long term effects are detrimental to final model accuracy. We
believe that this interplay has not been studied thoroughly before and that it appears to be a
critical component when making use of strategies that switch from a fully synchronous regime
to local training, like post-local SGD.

8. Limitations

A limitation of this work is that it only studies the ImageNet-1k classification task. Nevertheless,
with over 1.28 million images and 1000 classes, ImageNet-1k is considered a de facto benchmark
for natural image vision classification tasks. Our experiments study a wide variety of settings
and account for more than 47,000 GPU hours of compute. Moreover, existing analysis on
CIFAR-10 along with our experiments using TinyImageNet seem to indicate that the behavior
of post-local SGD depends on the task scale. Since methods such as local SGD are used in a
distributed setting mostly required by large networks and datasets, we deem important that a
benchmark of this size is used. Lastly, while we do not propose new algorithmic approaches,
our analysis identifies trade-offs of local and post-local SGD not reported before which impact
its applicability by researchers and practitioners alike. For instance, the dependence between
final model accuracy and factors like learning rate or switching point is critical to the viability
of post-local SGD.

9. Conclusion

In this paper we present a thorough analysis of local and post-local SGD at scale by evaluating
them on the ImageNet-1k classification task. We identify several scalability limitations that
local and post-local SGD experience and analyze the trade-offs they present in terms of final
model accuracy. We find that the number of workers and the number of local steps for local
SGD present accuracy trade-offs, and we unify these hyperparameters into a trade-off expressed
in terms of number of local model updates between synchronizations. We characterize the
behavior of post-local SGD for different switching points along the training process, revealing
a similar trade-off between communication and model accuracy. Furthermore, we identify that
the choice of learning rate schedule has a large impact for the resulting accuracy of post-local
SGD. We further show that incorporating the slow momentum framework of Wang et al.
(2020) consistently improves accuracy without requiring additional communication. Lastly,
our analysis reveals that switching to local SGD has a regularization effect on optimization
that is beneficial in the short term but detrimental to final model accuracy.
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Appendix A. Experimental Setup - Additional Details

A.1 LARS

We make use of the LARS optimizer as implemented in NVIDIA APEX library with clipping
enabled and a trust coefficient of 0.02 and ε=10−8for all the reported experiments. Despite
LARS being proposed with a polynomial learning rate schedule, we use the same step-wise
learning rate schedule as with the other experiments to reduce the chance of confounding
factors. We found the polynomial schedule to perform slightly better (< 0.5%) than the
step-wise but both are able to achieve competitive top 1 validation accuracy results. All other
hyperparameters are identical to the setup described for SGD with momentum.

A.2 TinyImageNet

As discussed in the main body of the paper, we perform experiments on TinyImageNet, a
spatially downscaled subset of ImageNet. Here we include details of our experimental setup
for results involving TinyImageNet. Unlike with other datasets, to our knowledge there
is no rigorous analysis like Goyal et al. (2017) for TinyImageNet that contains validated
recommendations of hyperparameters. Therefore, we performed a series of hyperparameter
searches and arrived at the following choices after cross-validating several settings.

We use a slightly modified version of ResNet-50 and ResNet-101 where the first maxpool
layer has been discarded (as in Leavitt and Morcos (2020)) to account for the difference in
spatial size of the images (224x224 in ImageNet-1k vs 64x64 in TinyImageNet). Similarly, we
halve the size of the learnable filters to account to the reduction in dataset complexity. Models
are trained for 60 epochs with learning rate decays at epochs 30 and 50. We use L2 weight
decay with λ=10−3. We found weight decay to be one of the most influential hyperparameters
for this task. Apart from these changes, the rest of the training setup uses the same choices as
with the ImageNet experiments: learning rate warmup, momentum correction, learning rate
scaling and model initialization.

A.3 SlowMo

SlowMo introduces two additional hyperparameters: α, the “slow” learning rate, and β,
the “slow” momentum coefficient. For computational reasons, we do not sweep the α and β
hyperparameters of SlowMo and set them to recommended defaults of α=1 and β=0.5.

A.4 Platform Details

All methods are implemented using PyTorch 1.6 (Paszke et al., 2019) and we use the ResNet
implementations from torchvision 0.7 with CUDA 10.1 and the NCCL communication library.
Our experiments run on nodes with eight NVIDIA V100 GPUs each. The nodes communicate
over 10 Gb/s Ethernet links. Throughout, a worker refers to a process in a node that makes
use of one GPU exclusively. Thus, the number of workers is equivalent to the number of GPUs
and, in our setup, is equivalent to eight times the number of nodes.
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Appendix B. Additional Experiments
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Figure 12: Training Accuracy as a function of the number of local model updates (H ·K) for
local SGD (left) and post-local SGD (right). mSGD values correspond to the minibatch SGD
baseline.
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learning rate schedule. LARS presents a similar trade-off to SGD, with switching points later
into training providing better accuracy. LARS seems to have a more linear trade-off without a
direct impact.
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Figure 14: Training and validation error minibatch, local SGD, and post-local SGD for
step-wise and half cosine learning rate schedules. The left column is for step-wise and the right
column is for half cosine. Results are for 64 workers and 4 local steps for local and post-local
SGD. Switching to local SGD has a detrimental effect on the training error but a beneficial
effect on the validation error.
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