Learning from Few Subjects with Large Amounts of Voice Monitoring Data

Jose Javier Gonzalez Ortiz

John V. Guttag Robert E. Hillman Daryush D. Mehta Jarrad H. Van Stan Marzyeh Ghassemi

Challenges of Many Medical Time Series

- Few subjects and large amounts of data
 - \rightarrow Overfitting to subjects
- No obvious mapping from signal to features
 - \rightarrow Feature engineering is labor intensive
- Subject-level labels
 - → In many cases, no good way of getting sample specific annotations

Challenges of Many Medical Time Series

- Few subjects and large amounts of data
 - \rightarrow Overfitting to subjects
- No obvious mapping from signal to features
 → Feature engineering is labor intensive

- Subject-level labels
 - → In many cases, no good way of getting sample specific annotations

Unsupervised feature extraction

Multiple Instance Learning

Learning Features

- Segment signal into windows
- Compute time-frequency representation
- Unsupervised feature extraction

Classification Using Multiple Instance Learning

• Logistic regression on learned features with subject labels

• Aggregate prediction using % positive windows per subject

Application: Voice Monitoring Data

- Voice disorders affect 7% of the US population
- Data collected through neck placed accelerometer

Previous work relied on expert designed features^[1]

		AUC	Accuracy
Expert LR	Train	0.70 ± 0.05	0.71 ± 0.04
	Test	0.68 ± 0.05	0.69 ± 0.04
Ours	Train	0.73 ± 0.06	0.72 ± 0.04
	Test	0.69 ± 0.07	0.70 ± 0.05

Comparable performance **without** task-specific feature engineering!

[1] Marzyeh Ghassemi et al. Learning to detect vocal hyperfunction from ambulatory neck-surface acceleration features: initial results for vocal fold nodules. IEEE Trans. Biomed Engineering

Jose Javier Gonzalez Ortiz

- Our method learns features from large time series data
- Reduces the need for laborious task-specific feature engineering
- Applied to large voice monitoring dataset
 - Comparable performance to previous work that relied on expert engineered features