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Dataset Architecture #	of	Papers

ImageNet VGG-16 22
CIFAR-10 ResNet-56 14
ImageNet ResNet-50 14
ImageNet CaffeNet 11
ImageNet AlexNet 9
CIFAR-10 CIFAR-VGG 8
ImageNet ResNet-34 6
ImageNet ResNet-18 6
CIFAR-10 ResNet-110 5

ResNet-56 on CIFAR-10
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Summary 
‣Meta-analysis of neural network pruning papers 
‣Main finding: lack of experimental standardization has 

made it impossible to tell what works best 
‣Open source library for standardized evaluation of 

pruning methods: https://github.com/jjgo/shrinkbench

‣ Pruning: given a fixed 
architecture, remove 
parameters to increase 
efficiency

‣ Typical pipeline: iteratively prune and finetune a 
pretained model

Model (+ Data) Pruning Masks 
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Accuracy Curve

Neural Network Pruning 

‣ Standardized datasets, architectures, preprocessing, 
finetuning, evaluation, etc 

‣ Flexible mask-based API to allow arbitrary sparsity and 
pruning algorithm

‣ Size and speed metrics are 
not interchangeable

‣Must use multiple networks 
and amounts of pruning

‣ Initial weights are an 
important confounder

ResNet-56 on CIFAR-10

‣ Reporting changes in 
accuracy doesn’t fix it

Consistent Findings 

‣ Same dataset, architecture, 
efficiency metric, quality metric 

‣Whole tradeoff curve reported 

‣ Identical hyperparameters 

‣ Consistent progress over time

‣ Fragmented datasets, 
architectures, metrics 

‣ Different hyperparameters 

‣ Incomplete curves, or 
single points 

‣ No clear progress over time 
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Finetuning Evaluation

‣ Pruning works! 

‣Measurable efficiency gains 

‣ Better than random 

‣ But not as helpful as using a 
better architecture
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But Why?

Additional Pitfalls Uncovered
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