

Neural Network Pruning

Pruning: Systematically removing parameters from an existing network

Goal: Reduce size of network as much as possible with minimal drop in accuracy

A survey of 80 pruning papers revealed

- No clear standardized metrics or baselines
- No clear state-of-art due to the lack of standardized evaluation

This research was funded by "la Caixa" Foundation Fellowship and by Qualcomm Innovation Fellowship

Standardizing Neural Network Pruning

Jose Javier Gonzalez Ortiz, Davis Blalock, John Guttag

We introduce ShrinkBench, a tool for standardizing NN pruning evaluation. shrinkbench.github.io

ShrinkBench

- •Open-source library to facilitate standardized neural network pruning evaluation
- Provides standardized datasets, pretrained models, and evaluation metrics

- Enables rapid prototyping and evaluation of pruning methods
- •Simple and generic parameter masking API
- Measures number of nonzero parameters, activations, and FLOPs

-2.1 4.6 0.8 -0.1 0.2 1.5 -4.9 2.3 -2.5 2.7 4.2 -1.1 -0.3 5.0 3.1 4.7

• Empirical results using pruning baselines show the need for standardized evaluation.

3. SB controls for confounding factors such as pretrained weights or finetuning schedules

Results

1. SB returns both compression & speedup since they interact differently with pruning

ResNet 18 on ImageNet

2. SB evaluates with varying compression and with several (dataset, architecture) combinations

josejg@mit.edu