
•  At the end of each trial, the correct category was revealed 
and the subjects recorded the accuracy of their category 
guess. 	
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DTW Robustness	
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Results	

Mel-Frequency Cepstrum	


•  Butterworth high pass filter (fc = 25Hz)	


•  Mel-Frequency Cepstral Coefficients are computed for each heart sound cycle	

	


•  The logarithmic filterbank has higher resolution on low frequencies	


•  The MFCC mean and standard deviation of each record capture variability 
within each filterbank interval	


Dynamic Time Warping	
 Intra-patient Variability	


•  Preprocessing steps applied prior to computing the DTW distances to 
reduce the noise 	


i.  Butterworth high pass filter (fc = 25Hz)	

ii.  Homomorphic Envelogram	

iii.  Z-standardization (zero mean, unit variance)	
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Butterworth high pass filter	


Raw signal	


Homomorphic Envelogram	


DTW finds an optimal alignment between two time-dependent sequences  
by warping the sequences in a nonlinear fashion	


•  Cardiac conditions may manifest by higher than usual variability in heartbeat 
shape and frequency	


•  To capture intra-patient variability, DTW distance is computed for each 
combination of heartbeats	


Inter-patient Variability	


Overview of the supervised learning system	


Our supervised learning system consists of three main stages:	

	

•  Segmentation – PCG recordings are segmented into the fundamental heart sounds1 	


•  Feature Engineering – Features pertaining to time intervals, spectral analysis and 
morphology are extracted from the segmented records	


•  Classifier – We learn a linear support vector machine (SVM) with asymmetric cost 
parameters to handle class imbalance	


Clustered Matrix	
 Clusters with Centroids	
Affinity Matrix	


•  Kernel density estimates 
are computed to assess 
the robustness of DTW-
based features to inter-
population differences	


•  DTW based features 
consistently reduce inter-
populational variability, 
producing more 
homogeneous distributions	


Features	
 BAL	
 BAL\f	
 Challenge	


Interval 
Wavelet	
 74.22 ± 0.63	
 76.41 ± 0.86	
 58.27	
 52.35	
 [48.20, 76.50]	
 78.1	


Interval 
MFCC	
 77.68 ± 0.48	
 79.66 ± 0.72	
 60.90	
 54.91	
 [51.70, 73.80]	


MFCC 
interDTW	
 85.73 ± 0.48	
 79.72 ± 1.04	
 66.03	
 64.64	
 [58.50, 75.70]	
 79.5	


MFCC*	

intraDTW	
 85.18 ± 0.74	
 84.89 ± 0.43	
 68.37	
 68.81	
 [61.10, 77.40]	
 82.4	


MFCC	

intraDTW	

interDTW	


85.63 ± 0.42	
 84.42 ± 0.49	
 66.95	
 67.78	
 [60.60, 75.30]	
 78.9	


*  This set of features includes also Systole and Diastole in addition to S1 and S2	


Spectrum of a sample interval	
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MFCC filterbank in the range (0, 150) Hz	
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Introduction	


Pairwise DTW matrices for the heartbeats in a sample record	


•  PhysioNet/CinC 2016 Challenge: automatically classify heart sound recordings 
collected from both clinical and nonclinical environments 	


•  We explore temporal alignment techniques, in particular dynamic time warping 
(DTW), to address inter-patient and inter-population differences	


•  DTW-based features effectively reduce inter-patient variability and bias from 
heterogeneous data collection environments	


	

•  DTW to compare intra- and inter-subject morphology of heart sounds	

	


•  DTW has obtained good results in the past in the domain of ECG 
classification3,4	


Computing Medoid Beats	


•  Intra-DTW features fail to capture abnormalities that manifest consistently	


•  Inter-patient DTW distances aim to capture canonical patterns based on a 
beat’s similarity to a set of template heartbeats	


•  For each population and class, spectral clustering is performed using the 
representative heartbeats of each recording. 	


•  Templates are selected from the centroids of each cluster	

	


•  DTW distances between templates and heartbeats are computed	


•  Features are obtained from the distances to the medoid heartbeat	


•  Features are also extracted from contiguous heartbeats to capture time 
evolution	


Cross-Validation Setup	

We considered a number of experimental setups that differ in the way data 
are split into training (   )  and validation (   ) sets	
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Medoid heartbeat in a sample recording	


•  To construct a representative heartbeat for a given record we use the medoid 
heartbeat	


•  This is the heartbeat whose average DTW distance to all the other in-record 
heartbeats is minimal	
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