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Abstract
Neural network pruning consists of reducing the size of
a network by removing parameters. In this work, we in-
troduce ShrinkBench, an open-source library to facilitate
standardized evaluation of neural network pruning meth-
ods. ShrinkBench simplifies using standardized datasets, pre-
trained models, and evaluation metrics for implementing
pruning methods. In addition to describing the functionality
of ShrinkBench, we demonstrate its utility by using it to
implement and evaluate several pruning methods. We show
that ShrinkBench’s comprehensive evaluation can prevent
common pitfalls when comparing pruning methods.

1 Introduction
Deep neural network inference often requires large amounts
of computation andmemory. Pruning, i.e. reducing the size of
a network by removing parameters, is a popular approach for
reducing these requirements. Typically, methods start with a
large and accurate network, and then try to make it smaller
with as little loss in accuracy as possible. Unfortunately, un-
like in some other areas of machine learning, there is no
widely agreed upon set of benchmarks or measurements
that facilitate comparison of methods [1, 8]. Different papers
use different datasets, prune different network architectures,
and report performance in differing ways, making it almost
impossible to know under what conditions one technique is
better than another. In this work, we present ShrinkBench,
an open-source library designed to make it easier for re-
searchers to test pruning methods in a way that facilitates
direct comparisons. In addition to describing ShrinkBench,
we use it to examine some existing pruning heuristics. Our
empirical findings demonstrate that a pruning method’s per-
formance can vary across datasets, networks, initial weights
and reported metrics—confirming the need for standardized
evaluation of pruning methods.

2 System Overview
ShrinkBench1 is a Python library designed to ease evalua-
tion of neural network pruning methods. ShrinkBench was
designed with two goals in mind: 1) enable rapid prototyp-
ing of neural network pruning methods, and 2) facilitate
the use of standardized metrics, datasets, network architec-
tures, and finetuning setups. Using ShrinkBench, researchers
can easily implement pruning strategies and evaluate their
effectiveness across a wide range of scenarios. The library
provides tools for running experiments using standardized

1Source code: https://github.com/shrinkbench

dataset-model combinations and controlling for potentially
confounding factors such as finetuning hyperparameters or
initial weights. Results can then be aggregated to produce
method comparisons like the ones presented in the results
section. ShrinkBench works with off-the-shelf PyTorch[9]
model architectures, simply requiring the user to provide
parameter masks that indicate which parameters to keep,
and optionally new values for the remaining weights. To
facilitate the task of computing the set of parameter masks,
ShrinkBench provides primitives for retrieving parameters,
activations, and gradients. Since only the parameter masks
are required, ShrinkBench supports arbitrary scoring func-
tions, allocation of parameters across layers, and sparsity
structures. From the parameter masks, ShrinkBench can
train and fine-tune models ensuring that masked param-
eters do not contribute to the output of the network and
are not updated during backpropagation. Given these masks,
ShrinkBench will automatically apply the pruning, update
the network according to a training or fine-tuning setup,
and compute metrics across many models, datasets, random
seeds, and compression ratios. Since the existing literature
on pruning has mostly focused on computer vision tasks,
ShrinkBench provides a set of vision-related dataset-model
combinations with pretrained weights.

3 Baselines
We used ShrinkBench to implement several baseline pruning
methods, both as examples of how to use our library and as
baselines to which new methods can compare.
• Global Magnitude Pruning - prunes a fraction f of all the
weights with the lowest absolute value.

• Layerwise Magnitude Pruning - for each layer, prunes a
fraction f of the weights with the lowest absolute value.

• Global Gradient Magnitude Pruning - prunes a fraction f
of all the weights with the lowest absolute value of weight
times gradient, evaluated on a batch of inputs.

• Layerwise Gradient Magnitude Pruning - for each layer,
prunes a fraction f of theweights with the lowest absolute
value of weight times gradient, evaluated on a batch of
inputs.

• Random - prunes a random fraction f of all the weights.
Magnitude-based pruning approaches are common baselines
in the literature that have proven to be competitive with
more complex methods [2–5]. Gradient-based methods are
less common, but have recently gained popularity [6, 7, 10].
Random pruning is just a straw man approach. The proposed
baselines are not faithful reproductions of any of the cited
methods. We just employed similar pruning heuristics.
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4 Results
We tested ShrinkBench by pruning over 800 networks using
the described baselines and varying datasets, networks, com-
pression ratios, initial weights, and random seeds. In doing
so, we identified various pitfalls associated with experimen-
tal practices that are currently common in the literature but
that can be avoided by using ShrinkBench’s evaluation.

Metrics are not Interchangeable. It is a common practice
to describe the amount of pruning by reporting either the
reduction in the total number of parameters or in the num-
ber of theoretical FLOPs. If these metrics are sufficiently
correlated, reporting only one is sufficient to characterize
the effectiveness of a pruning method. Our experiments indi-
cate that this not necessarily true. As Figure 1 shows, Global
pruning methods are more accurate than Layerwise meth-
ods for a given model size, but Layerwise methods are more
accurate for a given theoretical speedup. This discrepancy is
related to the fact that pruning layers with larger inputs can
result in higher computational savings.
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Figure 1. Accuracy for ResNet-18 on ImageNet for several
compression ratios and their respective theoretical speedups.

Results VaryAcrossModels, Datasets, andRatios Many
methods report results on only a small number of datasets,
models, and compression ratios. If the relative performance
of different methods were constant across these factors, this
would not be problematic. But they are not. Figure 2 shows
accuracy for increasing compression ratios for CIFAR-VGG
[11] and ResNet56 on CIFAR10. In general, Global methods
aremore accurate than Layerwisemethods, magnitude-based
methods are more accurate than gradient-based methods,
and random performs worst of all. However, if one were only
to look at CIFAR-VGG for compression ratios smaller than
10, one could conclude that Global Gradient outperforms all
other methods. In contrast, for ResNet56, Global Gradient
always underperforms compared to Global and Layerwise
Magnitude Pruning. Moreover, we found that for some set-
tings (such as Global Gradient, compression 16), different
random seeds yielded significantly different accuracies (0.88
vs 0.61).
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Figure 2. Top 1 Accuracy on CIFAR10 for several compres-
sion ratios. Global Gradient performs better than Global for
CIFAR-VGG on low compression ratios, but worse otherwise.
One standard deviation bars across three runs are included.

Using the Same Initial Model is Essential. Many papers
report results on the same neural network architecture whilst
using different initial models (sets of pretrained weights).
Using ShrinkBench, we found that initial model can be a
significant confounding factor when comparing methods.
We trained two ResNet56 models from scratch using Adam
until convergence with η = 10−3 and η = 10−4. For brevity,
we will refer to these sets of pretrained weights as weights
A and B respectively. Figure 3 shows pruning results (after
fine-tuning) for each set set of weights for both Global and
Layerwise Magnitude Pruning. With pretrained weights A
the methods seem comparable in terms of accuracy. On the
other hand, for pretrained weights B, Global is more accurate
for higher compression ratios. For both, Global strictly out-
performs Layerwise Magnitude Pruning, suggesting it is a
better approach. However, had we only compared Layerwise
pruning with pretrained weights A to Global with pretrained
weights B, we would have reached a different conclusion.
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Figure 3. Global and Layerwise Magnitude Pruning on two
different ResNet-56 models.

All these results evidence the need for standardized exper-
iments when evaluating neural network pruning methods.
With ShrinkBench we aim to provide a toolkit that facili-
tates the task of producing comprehensive and reproducible
evaluations of proposed pruning approaches.
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