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Abstract

Global eradication of malaria depends on the de-
velopment of drugs effective against the silent, yet
obligate liver stage of the disease. The gold stan-
dard in drug development remains microscopic
imaging of liver stage parasites in in vitro cell
culture models. Image analysis presents a major
bottleneck in this pipeline since the parasite has
significant variability in size, shape, and density
in these models. As with other highly variable
datasets, traditional segmentation models have
poor generalizability as they rely on hand-crafted
features; thus, manual annotation of liver stage
malaria images remains standard. To address this
need, we develop a convolutional neural network
architecture that utilizes spatial dropout sampling
for parasite segmentation and epistemic uncer-
tainty estimation in images of liver stage malaria.
Our pipeline produces high-precision segmenta-
tions nearly identical to expert annotations, gen-
eralizes well on a diverse dataset of liver stage
malaria parasites, and promotes independence be-
tween learned feature maps to model the uncer-
tainty of generated predictions.

1. Introduction
Malaria remains a major global health scourge, with nearly
half of the world’s population remaining at risk (World
Health Organization, 2018). Plasmodium vivax is the main
barrier to malaria eradication because it harbors dormant
forms in the liver, termed hypnozoites, which can reactivate
weeks to years after the initial infection and cause relapsing
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disease. Thus, a malaria eradication campaign cannot be
envisioned without eliminating the hypnozoite reservoir.
However, there is only one clinically available drug that has
anti-hypnozoite activity, which underlies the pressing need
for continued drug screening and development (Wells et al.,
2010; Alonso et al., 2011).

Current drug development approaches for liver stage anti-
malarials involve large-scale screening against in vitro cul-
tures of liver cells that have been infected with malaria
parasites (Gural et al., 2018; Antonova-Koch et al., 2018;
Meister et al., 2011; Roth et al., 2018), with immunofluo-
rescent microscopy as a primary readout. Though manual
image segmentation for parasite identification and sizing
remains standard, it is time and labor intensive, requiring
significant technical expertise.

To address this need for automation in the anti-malarial
screening pipeline, we present a convolutional neural
network-based (CNN) architecture for automated segmenta-
tion of parasites in liver stage malaria infection, and develop
a Bayesian deep learning approach for estimating uncer-
tainty in image segmentations. We demonstrate accurate
parasite detection and segmentation on a challenging liver
stage P. vivax dataset, characterized by its variability in
terms of parasite shape, density, and size. Finally, through
dropout sampling of feature maps during training, we es-
timate the uncertainty of our segmentations and develop
a generalizable algorithm for epistemic, or model, uncer-
tainty (Kendall & Gal, 2017) metrics in image segmentation.

2. Related Work
Approaches to biomedical image segmentation fall into rule-
based and network-based methods. A common rule-based
approach is thresholding based on the intensity of fluores-
cent stains, which suffers in the face of noise and non-
uniform stain intensities in the images (Phansalkar et al.,
2011). A popular open-source software, CellProfiler uses
user-defined features in conjunction with image processing
algorithms to perform object identification for cell image
analysis (Carpenter et al., 2006). CellProfiler can achieve
high accuracies on many image processing problems, yet
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Figure 1. Dataset of liver stage Plasmodium vivax infection.
Representative images from dataset of P. vivax infected human hep-
atocyte cultures, eight days post infection. Green and red channels
correspond to stains for parasite membrane and cytoplasmic pro-
teins, respectively, and blue channel corresponds to nuclear stain.
A: Representative data, where white circles indicate true positives.
Scale bar is 100 µm. B: Representative examples of false positives
in image patches. C: Representative examples of true positives in
image patches, including the small forms or hypnozoites (top &
bottom) and large forms or schizonts (middle).

is limited in its generalizability and robustness, as a new
pipeline and a new feature set must be created for each
distinct task.

CNNs have emerged as an attractive approach for the seg-
mentation of biomedical images due to their strength on
visual recognition tasks. For example, a convolutional net-
work with a sliding-window setup to predict the class label
of each pixel in an image has been presented (Ciresan et al.,
2012), yet this approach suffers from computational inef-
ficiency and requires significant spatial context to achieve
high accuracy. Our approach addresses these limitations
by using a convolutional U-Net (Ronneberger et al., 2015)
for accurate, efficient image analysis of liver stage malaria
infection. Furthermore, we develop a generalizable method
for spatial uncertainty modeling (Amini et al., 2018) in im-
age segmentation and provide concrete estimates of model
uncertainty on our malaria dataset.

3. Methodology
Given a dataset of input image and binary segmentation
pairs (X,Y ), where Y is a pixel-wise binary classification
of the input image with positive pixel labels corresponding
to the parasite class, we learn a functional mapping f pa-
rameterized by weights W such that the distance from its

output Ŷ = f(X;W ) to the true labels Y is minimized.

3.1. Dataset

The liver stage P. vivax dataset consists of images of human
hepatocytes cultured in the micropatterned co-culture for-
mat and imaged eight days following infection with P. vivax
parasites. Cultures were fixed and stained for the parasite
membrane protein UIS4 (green channel) and either a his-
tone acetylation marker, H3K9ac, or a cytoplasmic parasite
protein, BIP (red channel). DAPI (blue channel) staining
was used to mark hepatocyte nuclei. On day eight, cul-
tures comprise two parasite stages: the dormant hypnozoites
which are small in size and uninucleated (Fig. 1c, top &
bottom), and the maturing schizonts which are large and
multinucleated (Fig. 1c, middle). Approximately 0.2-1% of
hepatocytes are infected based on the typical infectivity of P.
vivax in this culture system. All images were annotated by
experienced researchers via manual identification and seg-
mentation of the parasites present. The dataset was split into
training, validation, and test cohorts, and 256× 256 pixel
RGB image patches were selected from each 1024× 1024
images. Patches that contained the presence of the green
UIS4 parasite membrane stain and the red BIP parasite pro-
tein stain above a threshold T were fed into the model for
training. We further augmented the data by applying random
rotations and symmetries. Approximately 5000 augmented
image patches were used for training.

3.2. Model

To perform the segmentation task, we utilized a convolu-
tional U-Net architecture (Ronneberger et al., 2015), which
uses a autoencoder structure where the input image is com-
pressed and then decompressed through successive convolu-
tional layers, connected via skip-like connections (Fig. 2).
The network was trained using the pixel-wise cross-entropy
loss,

L(y, ŷ) = −
∑
i

yi log ŷi + (1− yi) log(1− ŷi) (1)

where i is the index of a pixel in an image, y is the true label
of a pixel, and ŷ ∈ [0, 1] is the predicted label of the pixel.
We performed one-fold cross validation using the validation
data, and applied our trained model to a held-out test set
to assess performance. All models were implemented in
TensorFlow and trained on a NVIDIA Titan X GPU.

The performance of our U-Net model was benchmarked
against the ground truth human annotation, a threshold-
ing algorithm, and a regularized logistic regression model
trained on class-balanced patches. We utilized a commonly
used evaluation metric, the Average Precision Score (APS):
APS =

∑
n(Rn −Rn−1)Pn, where Rn and Pn are the re-

call and precision, respectively, at threshold n. Precision is
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Figure 2. Architecture for segmentation of images of liver stage malaria infection. A convolutional U-Net successively compresses
and decompresses the input image to output a pixel-wise classification. Convolutional blocks across the encoder and decoder portions of
the network are connected by skip-like connections indicated in black arrows. Spatial uncertainty sampling via dropout is applied between
successive convolutional blocks to estimate model uncertainty, and network outputs after convolutional blocks are visualized in inset.

defined as the percentage of segmented pixels that correctly
correspond to a parasite, and recall is the percentage of true
segmented pixels identified.

3.3. Uncertainty Estimation

To investigate the confidence of our model in generating
parasite segmentations, we utilized a dropout based ap-
proach for estimating model uncertainty (Gal & Ghahra-
mani, 2016a;b; Amini et al., 2018). It has been shown
that applying dropout before every weight layer in a neu-
ral network is equivalent to approximating a probabilistic
deep Gaussian process, and that this approximates the pos-
terior distribution over the network weights, q(W ) (Gal &
Ghahramani, 2015; 2016a). Given input image data X and
a segmentation output Y , we can use the dropout-based
approximation of the posterior, to obtain an estimation for
the predictive distribution q(Y |X), the likelihood of a seg-
mentation given an input image. We have:

q(Y |X) =

∫
P (Y |X,W ) q(W ) dW (2)

Given T stochastic forward passes through the network gen-
erated with dropout, {Wt}Tt=1, we can define the predictive
mean as: E[Y |X] = 1

T

∑T
t=0 f(X,Wt). Thus, the pre-

dictive variance, which defines the model uncertainty, is:

Var[Y |X] =
1

T

T−1∑
t=0

f(X,Wt)
2 − E[Y |X]2. (3)

Given that the U-Net architecture is purely convolutional,
we utilize spatial Bernoulli dropout (Tompson et al., 2015;
Amini et al., 2018) for the stochastic sampling. In this
method, our uncertainty estimates result from sampling a
Bernoulli random variable Z to drop entire feature maps in
the network, where z(k,l) ∼ Bernoulli(p) corresponds to
k-th feature map in the l-th layer and p is the probability that

all units in the feature map remain active (Gal & Ghahra-
mani, 2015). This approach has previously been shown to
be a special case of element-wise dropout and thus a valid
way for estimating model uncertainty (Amini et al., 2018).

4. Experiments and Results
To assess the performance of our model on the segmentation
of P. vivax parasites, we trained the U-Net architecture with
pixel-wise cross entropy loss, evaluated our trained model
on a held-out test dataset of P. vivax liver stage culture
and assessed segmentation precision using the APS. As
baselines, we evaluated the performance of the thresholding
and logistic regression models on the test dataset.

Representative examples of the resulting segmentations are
shown in Fig. 3a. We visually compared the segmentations
returned by each of thresholding baseline, logistic regres-
sion, and the U-Net with cross entropy loss to images from
the dataset with true positives highlighted, and found that
the baseline models appear unable to distinguish parasites
from other stains of similar brightness, or recognize that two
regions of significantly different brightnesses could both be
parasites. These results suggest that our U-Net architecture
is both sensitive and specific in its detection and segmenta-
tion of parasites in these images. More quantitatively, we
evaluated the precision of the U-Net and logistic regression
models using the APS, and found that the U-Net trained
with cross-entropy loss achieved a precision exceeding 98%
on the held-out test set, while the logistic regression model
achieved a precision of 80.7%.

In addition to the detection and segmentation of malaria
parasites in hepatocyte cultures, statistics about the number
and size of parasites present in an image are critical to
both drug development and fundamental biology research.
Using a simple clustering algorithm, we count and size
parasites with high accuracy, identifying approximately 10%
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Figure 3. Neural network segmentation performance and uncertainty estimation. A: Results for the segmentation task on dataset
images with true positives circled in white, comparing the segmentations returned by the threshold baseline, logistic regression, and U-Net
models. B: Representative examples from dataset (left), ground truth human annotation (middle left), U-Net segmentations (middle right),
and visualization of model uncertainty (right). C: Zoom-in of the boxed region in (b) comparing the input image (top) to estimations of
model uncertainty over the region of interest (bottom).

for human annotation. Out of the 13.3% of the images where
the number of parasites was incorrectly counted, 91.3%
were within 1 of the true annotation.

Finally, we applied spatial dropout sampling to estimate
and subsequently visualize model uncertainty, that is, the
regions of predicted segmentation where we can think of
the model as being less confident in its prediction (Fig. 3b,
c). As shown in Fig. 3c, the U-Net model is more uncertain
in its prediction around the edges and membranes of the
segmented parasites, and more certain in the interior, cyto-
plasmic portion of the parasites, consistent with what we
may expect in terms of a model’s confidence in detection
and segmentation of particular regions of an image. It is
important to note that while the network’s predicted prob-
ability for a given class may be high, the model may not
necessarily be confident in that prediction. The uncertainty
algorithm presented here may thus be used to capture these
situations and to inform subsequent human annotation.

5. Conclusion
Our work supports the potential for neural network-based
methods to automate previously time-intensive processes of
the anti-malarial drug development pipeline. In particular,
our U-Net architecture demonstrates robust segmentation of
parasites during the liver stage of P. vivax malaria with near-
human accuracy. Furthermore, we develop a novel method
for uncertainty estimation in image segmentation tasks, uti-
lizing spatial dropout sampling to visualize model uncer-
tainty and evaluating our approach on the malaria dataset.
We believe that our neural network approach provides an ef-
ficient, accurate method for automated image segmentation
of liver stage malaria for applications in drug development
and screening, and that our spatial dropout algorithm pro-
vides a generalizable method for robust estimation of model
uncertainty in image segmentation tasks.
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