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Abstract

Recently, researchers have started training high complexity machine learning models
to clinical tasks, often improving upon previous benchmarks. However, more often than
not, these methods require large amounts of supervision to provide good generalization
guarantees. When applied to data coming from small cohorts and long monitoring periods
these models are prone to overfit to subject-identifying features. Since obtaining large
amounts of labels is usually not practical in many scenarios, expert-driven knowledge of
the task is a common technique to prevent overfitting. We present a two-step learning
approach that is able to generalize under these circumstances when applied to a voice
monitoring dataset. Our approach decouples the feature learning stage and performs it in
an unsupervised manner, removing the need for laborious feature engineering. We show
the effectiveness of our proposed model on two voice monitoring related tasks. We evaluate
the extracted features for classifying between patients with vocal fold nodules and controls.
We also demonstrate that the features capture pathology relevant information by showing
that models trained on them are more accurate predicting vocal use for patients than for
controls. Our proposed method is able to generalize to unseen subjects and across learning
tasks while matching state-of-the-art results.

1. Introduction

Data regimes with a small number of subjects and large amounts of data per subject are
common in many healthcare domains. Pathologies with low incidence rates can result in
small patient cohorts. This is also the case when performing invasive monitoring or when
specialized medical equipment is required. Similarly, long time series are commonplace in
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healthcare applications that require monitoring for extended periods as it is the case with
sleep disorders.

Recent machine learning developments have led to significant improvements in classifi-
cation accuracy for many clinical tasks (Rajpurkar et al., 2017; Henry et al., 2015; Poplin
et al., 2018). Most of these approaches only work when vast amounts of data are available
because they require large quantities of positive and negative training examples to provide
good generalization guarantees. This often translates into needing either a large sample of
patients and controls, or obtaining many labeled instances per subject.

In this work, we propose a two step framework that is able to generalize in the presence
of few subjects but large amounts of data per subject. We first compute a general purpose
time-frequency representation of the time series data. We then obtain feature encodings
by training a deep convolutional autoencoder over this spectral information. We then use
the encodings along with per-subject labels for downstream learning tasks. By decoupling
the feature learning task from the limited supervision, we encourage the model to learn
pathology related invariants rather than subject identifying characteristics.

We demonstrate the utility of our approach by applying it to a large collection of am-
bulatory voice monitoring data (Mehta et al., 2012). The dataset consists of 104 patients
and controls, with each having multiple days of data (≈ 109 samples per subject). We com-
pare to previous work (Ghassemi et al., 2014) which derived features using expert domain
knowledge along with statistical aggregates to prevent overfitting. We show that training
high complexity models on the soft per-subject labels leads to overfitting to subject-specific
traits and fails to generalize to unseen subjects. In contrast, our proposed approach matches
state-of-the-art predictive results without the need of laborious feature engineering.

We then evaluate the extracted features in a different task in the same dataset. We
train a model to predict recent vocal load, i.e. the amount of recent voice usage, based on
a short sample of consecutive encodings. We show the learned features capture pathology
relevant information by analyzing the increase in model performance between patients with
vocal fold nodules and their matched controls.

Technical Significance we present a learning based feature extraction model suitable
for tasks for which there is a small number of subjects and large amounts of time series data
per subject. We compare our model to baselines that are trained with direct supervision,
and show a failure mode these models have. Under small patient cohorts and without fine
grained supervision, fully supervised approaches can end up learning subject-identifying
features instead of pathology-related features. To the best of our knowledge, the method we
propose is the first for unsupervised feature extraction of large amounts of voice monitoring
data with a small patient cohort.

Clinical Relevance Our proposed model aims to remove the need for laborious feature
engineering. Even though the presented work is only evaluated in the context of voice moni-
toring data, we propose a methodology that can be applied to other tasks that fall in similar
data regimes. Overall, this work represents a starting point on which others can build. In
particular, we hypothesize that better techniques for dealing with ambulatory health related
data could lead to further improvements in non-invasive and remote diagnostics.

In the specific context of voice monitoring, the proposed model is clinically relevant
for several reasons. Vocal nodules are believed to be caused by damaging patterns of
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voice use, but the actual role of voice use in the etiology of vocal nodules is not well
understood. The ability to detect the daily voice use patterns associated with vocal nodules
(based on ambulatory monitoring) is an important step in developing improved methods
for preventing, diagnosing, and treating this common disorder - including the potential use
of this information in designing new ambulatory biofeedback approaches that could be used
to more quickly modify and ameliorate damaging vocal behaviors.

2. Related Work

2.1. Ambulatory Medical Data

Ambulatory data collection techniques offer great potential for improving clinical care. For
example, ambulatory cardiac monitoring techniques have been shown to be useful in the
detection of hypertension (Verdecchia et al., 1994), atrial fibrillation (Jabaudon et al., 2004)
and cardiac arrhythmias (Steinberg et al., 2017). Accelerometer data collected outside the
clinical environment has been used for detecting physical activity and fall-detection systems
(Mannini and Sabatini, 2010; Yuwono et al., 2012). This data regime is also frequent
in the sleep analysis domain where patients need to be monitored for extended periods
of time (Amiriparian et al., 2017; Biswal et al., 2017). Some recent work has leveraged
ambulatory data collected from increasingly ubiquitous wearable devices to learn multiple
medical conditions simultaneously (Ballinger et al., 2018).

The voice monitoring dataset we evaluate on has been previously used to distinguish
between patients with vocal fold nodules and their associated controls (Ghassemi et al.,
2014). This work relied on expert-driven features that prevented the models from overfitting
to subjects.

2.2. Feature Extraction

Spectrograms are used extensively in the fields of music, navigational acoustics, and speech
processing (Flanagan, 2013). Within the sound processing literature we find a variation:
mel-frequency spectrograms (Imai, 1983). Values of the representation correspond to the
logarithm of the power spectral density for different points in time and frequency. Values
themselves are equally spaced in time and logarithmically scaled in frequency. Features
computed in mel frequency are commonly used in speech recognition systems (Murty and
Yegnanarayana, 2006; Ganchev et al., 2005). Mel frequency spectrograms have proven to
be an effective representation for large-scale audio classification tasks using deep convolu-
tional models (Hershey et al., 2017; Salamon and Bello, 2017). Recent work has shown the
effectiveness of using mel spectrograms for training speech synthesis models (Shen et al.,
2018).

Autoencoders have been previously proposed as a way to learn useful low feature rep-
resentations of the data (Hinton and Salakhutdinov, 2006; Vincent et al., 2008). In the
medical domain, unsupervised training of autoencoders has been successfully used in fea-
ture extraction task for time series data. They have been applied to electrocardiogram data
(Al Rahhal et al., 2016), electroencephalogram data (Li et al., 2015) and polysomnogram
data (Tsinalis et al., 2016). Similarly, researchers have been able to use autoencoder net-
works to learn from large amounts of wearable sensor data (Ballinger et al., 2018). These
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Figure 1: Ambulatory voice health monitor: (A) smartphone, accelerometer sensor, and
cable with interface circuit encased in epoxy; (B) the wired accelerometer mounted on a
pad affixed to the neck between the adam’s apple and V-shaped notch of the collarbone.

approaches often rely on a large population size which is not a common case in many medical
applications where specialized monitoring equipment is needed.

3. Data

3.1. Data Extraction

Data was collected using an unobtrusive non-invasive ambulatory voice monitoring system
that uses a neck-placed miniature accelerometer (ACC) as the phonation sensor and a
smartphone as the data acquisition platform (Mehta et al., 2012). This device collects the
unprocessed accelerometer signal and daily calibration recordings from speakers. The raw
accelerometer signal is collected at an 11 025 Hz sampling rate, 16-bit quantization, and
80 dB dynamic range to get frequency content of neck surface vibrations up to 5000 Hz.
Figure 1 depicts the ambulatory voice health monitor.

Accelerometer data is preferable to acoustic recordings for various reasons: 1) continuous
daily recording of the acoustic signal raises privacy concerns, 2) the ACC signal is less
affected by external acoustic noise sources (Zañartu et al., 2009), and 3) the ACC signal
captured below the larynx is easier to analyze than the oral signal because the resonances of
the respiratory system are relatively time-invariant compared to the vocal tract resonances.

All subjects were monitored over the course of at least one week using the described
sensors. The subjects were instructed to wear the device during all waking hours. Nev-
ertheless, data was not always acquired in an exhaustive or continuous fashion because of
limitations of the data collection regime; strict compliance was not a pre-condition for data
inclusion. For example, if a subject wore the device for only four hours on one day, we did
not exclude data from that day from analysis.

Figure 2 shows samples of the raw accelerometer signal in both a short and a longer
time scale. At a short time scale we can appreciate the individual glottal pulses, which
have a fundamental frequency around 150 Hz. When looking at the longer time scale we see
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Figure 2: Raw signal from the accelerometer. The zoomed in subfigure (a) shows the high
frequency glottal segments. The zoomed out subfigure (b) showcases the signal envelope
along with the ramp up related to the start in phonation.

the signal envelope responsible for the signal modulation along with the ramp up provoked
from the start in phonation.

3.2. Cohort Selection

The collected dataset (Mehta et al., 2012) comprises 104 subjects that were monitored for
roughly a week using the neck place accelerometer and a associated smartphone where the
data is recorded. The population has 52 phonotraumatic patients with vocal fold lesions
and 52 matched controls that are considered healthy speakers. Each patient typically aids
in identifying a work colleague of the same gender and approximate age (±5 years) who
has a normal voice. The normal vocal status of all control subjects is verified via interview
and a laryngeal stroboscopic examination. Table 1 present some aggregate statistics for
recorded times along with the percentage of voicing time.

Group # Days Hours Samples (millions) % Voiced

PVH 52 7.33 ± 1.10 86.72 ± 20.40 3441.97 ± 809.52 9.27 ± 2.54
Controls 52 7.69 ± 1.11 94.76 ± 15.76 3761.15 ± 625.74 8.35 ± 2.98

Table 1: Mean and standard deviations across several metrics for both groups: Phonotrau-
matic Vocal Hyperfunction (PVH) and the matched controls. There are no statistically
significant differences across any of these metrics.

3.3. Voicing Detection

For most tasks we want to ignore silent periods of time since 1) the pathology will not be
manifested and 2) it will comprise the vast majority of the dataset. We do not have fine
grained supervision of the voice monitoring signal. However, detecting voice activity is a
rather straightforward task since voicing is directly correlated with the spectral intensity of
the signal. We use these values as vocal use detection proxies as in (Ghassemi et al., 2014).
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Figure 3: Four randomly sampled Log Mel-scaled Spectrograms for two patients with vocal
hyperfunction and their corresponding matched controls. Both negative (top) and positive
(bottom) windows can present similar patterns while still belonging to different classes,
which makes the classification task challenging.

4. Methods

4.1. Time-Frequency Feature Representation

We aim to learn predictive features from the data distribution without learning subject-
identifying patterns that could lead to overfitting. We are concerned with time series data
since most ambulatory monitoring equipment collects data in this manner. We use tools
from frequency domain analysis, common to science and engineering disciplines that have to
work with time varying signals. Time-Frequency analysis transformations such as spectro-
grams convert a univariate signal from the time domain to a two dimensional time-frequency
representation that contains the frequency domain transformation in a series of sliding win-
dows.

For this work we do not use a raw spectrogram transformation. We use a mel-scaled
spectrogram with logarithmic intensity as a two dimensional time-frequency encoding of the
signal. Log mel frequency spectrograms have proven to be an effective representation for
large-scale audio classification tasks using deep convolutional models (Hershey et al., 2017;
Salamon and Bello, 2017). Values of the representation correspond to the logarithm of the
power spectral density for different points in time and frequency, and values themselves are
equally spaced in time and logarithmically scaled in frequency. We include some examples
of this representation in Figure 3.

The bright bands in the spectrum correspond to the harmonics of the fundamental
frequency of the speaker. We can verify that the fundamental frequency lies in the interval
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Figure 4: Diagram of the convolutional autoencoder architecture used to learn the low
dimensional feature representations of the spectrogram data. Input and output are shown
for a sample spectrogram. The network is able to retain the majority of the structure of
the spectrogram representation.

150-200 Hz, common values for the human voice. From the figure we can appreciate the
importance of using a logarithmic binning of frequencies. The uniform spacing in the
bands is induced by this fact and ensures the representation has a higher resolution for low
frequency phenomena. Similarly, computing the spectrum in a decibel scale is a common
practice because of the multiplicative transformation most propagation channels induce.

4.2. Convolutional Autoencoder

From the mel-spectrogram representation we want a way to compress the information into
a lower dimensionality embedding. There are many possible options for this kind of un-
supervised feature extraction such as from PCA or clustering among others. Since the
spectrogram is a two dimensional representation with significantly non-linear features (as
shown in Figure 3) we chose a convolutional autoencoder trained in a self-supervised fash-
ion. Convolutional neural networks have been shown to be able to encode highly non linear
data distributions.

We train the model to output the same values provided as the input with a pixelwise
mean squared error penalty, a common choice for a regression task as the one we have.
Although we train the model to learn the identity function, a trivially looking task, it has
the constraint to encode the representation in a low dimensional real valued vector as an
intermediate step. This added constraint significantly increases the difficulty of the task and
enforces the network to learn a compressed version of the input data, prioritizing encodings
that will produce a better reconstruction of the output. We train the model on randomly
sampled voicing segments of 0.74 s (the median voice segment length) with the start of the
phonation aligned to be at the start of the segment.
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5. Vocal Hyperfunction Classification

5.1. Experimental Setup

Prior work (Ghassemi et al., 2014) made use of statistical aggregates of expert-driven fea-
tures to perform classification between patients with vocal fold nodules and their healthy
matched controls. They learned a logistic regression model that predicted whether a voicing
segment belonged to a patient or a control. Note that this is a form of soft label since it
labels all voicing windows with the corresponding subject class. While this might be a rea-
sonable thing to do in scenarios where the pathology is manifested uniformly throughout the
data, it is often a simplifying assumption needed in cases where supervision is scarce. In our
case, the belief is that control examples rarely manifest abnormal behavior. Some patient
examples will manifest pathology relevant characteristics whereas others will correspond to
normal instances of voicing activity.

Our proposed model like the one from prior work (Ghassemi et al., 2014), learns a
mapping from the voicing segments to a binary value determining whether that segment
belongs to a patient or a control. All the predicted labels from windows belonging to
the same subject are then aggregated to produce a subject-level prediction. To aggregate
predictions, we compute the percentage of windows labeled as positive for every subject and
then choose a optimal threshold separating the two classes. Evaluation is then performed
using the ground truth labels we have for every subject.

For the evaluation setup, we split the dataset into 5 randomized training/test splits.
We use the first split of the data to perform the model selection and report the results
for the remaining four. This is similar to a leave-one-out cross-validation strategy but
less computationally expensive. The splits are stratified to maintain equal proportion on
patients and controls, and to ensure that pairs of patient and matched control fall into the
same split.

5.2. Benchmarks

For each set of experiments, we compare our proposed method to several benchmarks.
Feature-LR - As a first baseline method, we use an approach similar to (Ghassemi et al.,

2014), which relies on expert-driven signal representations. The ACC signal is preprocessed
by computing an array of features over 50 ms windows. For each window we compute three
vocal dose measures: phonation time, cycle dose and distance dose. We also compute two
general purpose signal processing features: sound pressure level and fundamental frequency.
The features are then summarized using common statistical functions: mean, variance,
skew, kurtosis and 5/95% percentiles. Then, we use the statistical aggregates to train an
L1-regularized logistic regression model.

Feature-NN - We explore the use of sequence classification models to replace the
aggregate measures. We train a 1-dimensional convolutional neural network and a GRU
recurrent neural network (Cho et al., 2014) on sequences of the expert-driven features
as input. We treat the specific sequence classifier implementation as a hyperparameter
choice.We employ the same soft supervision as the Feature-LR approach, where each window
was labeled with the subject class.
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Train Test

AUROC Accuracy AUROC Accuracy

Features-LR 0.70 (0.05) 0.71 (0.04) 0.68 (0.05) 0.69 (0.04)

Features-NN 0.90 (0.02) 0.91 (0.01) 0.50 (0.11) 0.48 (0.12)

Raw-NN 0.88 (0.04) 0.89 (0.04) 0.55 (0.11) 0.53 (0.07)

Ours 0.73 (0.06) 0.72 (0.04) 0.69 (0.07) 0.70 (0.05)

Table 2: Results for training and test results for the four splits of the data not used for
model selection. Training values are included in order to quantify how much some models
are overfitting. Mean (standard deviation) across the splits are reported. AUROC uses the
continuous percentage output whereas accuracy employs the thresholded values.

Raw-NN - As an additional benchmark we train the same sequence classification models
(CNN and GRU) with the raw accelerometer waveform using the same supervision approach.
The main motivation for including this benchmark is because the preprocessed features the
other benchmarks use could have subject-identifying properties.

5.3. Results

Table 2 reports the mean and standard deviation across the four splits not used for the
hyperparameter selection. We observe that Feature-LR and our approach perform similarly
in the training data, and each drops slightly in performance when presented with unseen
data.

In contrast to those models, the Feature-NN and Raw-NN benchmarks strongly overfit,
with extremely poor generalization results. This was true no matter what the choice of the
neural network hyperparameters was. Furthermore, we experimented with various window
sizes and feature subsets. Regardless of these choices, the model only improved in the
training set while performing close to randomly on the unseen subjects. This demonstrates
a dangerous failure mode of using large amounts of data and a small number of subjects with
soft per-subject labels: fully supervised approaches can end up learning subject-identifying
features instead of pathology-related features.

For the reported results, the learned encoding vectors had 20 dimensions, close to the 18
features of the statistical aggregates of Feature-LR. We chose this value to have comparable
model complexities for these two classifiers. We did explore larger and smaller values of the
size of the encoding vector. Smaller encoding vectors (5, 10, 15) performed worse than our
results suggesting the model was underfitting. Larger values (30, 50, 70) did not increase
or decrease performance significantly. As the size of the encoding got close to the size of
the population (100, 150) the model started overfitting.
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6. Voice Utilization Regression

6.1. Experimental Setup

To investigate the generality of our representation of the voice signal, we use the same repre-
sentation for a different task, predicting recent voice utilization. Vocal loading refers to the
stress the vocal folds experience when a person speaks. The current clinical understanding
is that extended voicing causes more vocal loading for individuals with vocal fold nodules
than for people with healthy vocal folds, and that this leads to short term changes in the
activity of the vocal folds. We would like to test this hypothesis using ACC data.

Unfortunately, there is no accepted metric for quantifying vocal loading. What we do
have is an unambiguous way of measuring voice utilization using the spectral intensity
of the signal. Thus, we consider the problem of trying to predict the amount of recent
vocalization from a sample of consecutive voiced segments. If it is easier to predict the
amount of vocalization for patients than it is for controls, this would indicate that the
amount of voicing has a greater effect on patients than on controls. It is plausible that this
is, in turn, indicative of increased vocal loading, but there could be other causes.

In this experiment we want a mapping from several consecutive voicing segments to
recent voicing activity. We compute voice usage labels using the same voicing detector
we employed for segmenting the voiced windows. We generate labels by looking at each
voicing window and computing the percentage of voicing time in the last ten minutes. We
hypothesize that the model will produce more accurate results for patients than for the
controls, since we expect their voice quality to be more affected.

To perform this experiment we train a regression model that takes a fixed size N of
consecutive voicing windows and outputs a prediction of the amount of voicing in the
previous ten minutes. Here N is treated as a hyperparameter of the model. Output labels
are normalized to the length of the interval. We use a neural network model with a single
hidden layer. The network is trained using a mean absolute error (MAE) cost function. We
favor absolute error instead of squared error because of the presence of outliers in the label
distribution.

6.2. Experimental Results

We train a model using 1,000 randomly sampled windows per patient. We split the popu-
lation using the same strategy as in the classification task, using a single fold to perform
the model selection. Out of considered values for N , [1, 3, 10, 30], we found that a value of
N = 10 performed best for the voice use regression task. We then compute the coefficient of
the determination R2 for each subject over the 1,000 predicted windows. In order to assess
whether the model predictions are better for the patients than their matched controls we
perform a paired t-test over the R2 values for each patient and control (Fisher, 2006). As
we previously described, for the considered population, each patient has a closely matched
control with the same gender, and similar age and occupation.

We obtain that the difference is statistically significant with a p-value of p = .04. As we
hypothesized, the model is more accurate when predicting recent voice usage for patients
than for controls. We also highlight that this experiment was carried out using the same
learned features without having to tweak them in any way for this particular task.
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7. Conclusion

In this work, we proposed two step framework capable of learning useful features in a data
regime with few subjects, little supervision and large amounts of time series per subject.
Under this regime, traditional machine learning techniques are prone to overfitting issues
by learning subject identifying features. We combine ideas from signal processing and unsu-
pervised learning to learn a feature extraction model that works under these circumstances.
We train a convolutional autoencoder on log mel-scaled spectrogram windows to extract
features from the data. By decoupling the feature extraction from the downstream learning
tasks, our learned representation prevents common overfitting issues that approaches with
direct supervision experience.

We demonstrate the validity of our approach by applying it to a ambulatory voice mon-
itoring dataset. First, we use the extracted features along with per-subject soft labels to
classify between subjects with and without vocal fold nodules. Our framework generalizes
well to unseen subjects and our results match the state-of-the-art performance on the clas-
sification task. We then use the learned features to predict recent voice usage based on a
short sample of consecutive feature encodings. We show that the model is more accurate
when predicting subjects with vocal fold nodules than when predicting their matched con-
trols. Thus, the features generalize across subjects, while capturing relevant patterns for
downstream clinical prediction tasks.

There are several directions for future work. First, in its current form our model requires
small fixed sized windows of the time series data. While this is appropriate for datasets
with many events during the course of a day, such as the voiced segments in ours, it does
not translate well into problems with slowly varying behavior. A direction for future work
is to explore how to extend or modify the proposed model to deal with this kind of data. As
of now, the main limitation is that the model complexity increases linearly with the length
of the signal. Future work could also explore how this approach can be applied to other
datasets that operate in a similar data regime like for example ambulatory ECG data.
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Appendix A. Implementation Details

We include details of the implementation to facilitate the reproduction of the experiments
carried out in this work.

Spectrogram Computation As we have discussed, the main features of the spectrogram
computation is a logarithmic binning of frequency along with having a log scale in the
intensities to prevent spikes from dominating the entire signal.

We compute the power spectrum of the signal and ignore the phase content by taking
its magnitude. We did this to ensure that the spectrogram was a real-valued and because
of the modulated nature of the glottal pulse signal. We computed these spectrograms using
NNFFT = 2048, Nfilters = 128, and a sliding window setup with distance of ∆w = 128
samples. The size of the voicing segments was chosen to be close to the length of the
median voiced segment, 799 ms. Thus, we set the number of windows to Nw = 64 since for
a sampling frequency of f0 = 11 025 Hz we get:

T = Nw∆w
1

f0
= 128 · 64

1

11025
≈ 743 ms

We favor 64 instead of a more accurate 68 since a power of two makes pooling and
upsampling the data a simpler task in the convolutional neural network. This removes the
need for padding and cropping, simplifying the pipeline for the neural network and making
the computation more efficient. Once computed using the mentioned NNFFT value, we
band-limited the spectrograms from 8192 Hz to 2048 Hz since the majority of the energy
content of the signal was present in that region.

Lastly, we mention that the choice of overlap in the sliding window along with the choice
of window length was arbitrary (given the aforementioned constraints) and was not cross
validated as part of the model. The reasoning behind this choice was to use a reasonable
off-the-shelf time-frequency representation and then use the unsupervised model to perform
the feature extraction. If we were to compute highly tuned spectrograms for the task at
hand, the spectrogram itself would become an expert engineered set of features.

Autoencoder Model Following the same approach as with the time-frequency represen-
tation, we use an off-the-shelf convolutional autoencoder model with default choices for the
majority of its settings. The aim is not to over-engineer the network to the voice monitoring
dataset.

As pictured in Figure 4, the model is composed of a series of encoding blocks, an
embedding block, a series of decoding blocks and a final output layer.

• Encoding blocks - these are composed of two consecutive two dimensional convolu-
tional layers. We employed rectified linear unit (ReLU) activations because of their
known empirical results on image classification and segmentation tasks (Simonyan and
Zisserman, 2014; Ronneberger et al., 2015). Similarly, we use convolutional kernels of
size 3 by 3 to limit the model complexity. We add a batch normalization step between
the convolutional filters and the activation function (Ioffe and Szegedy, 2015). Batch
Normalization proved to be useful in reducing the number of epochs until the network
converged. Following the two convolutional layers, we add a max pooling layer that
downsamples the images by a factor of two.
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• Embedding block - we implement the embedding by using two dense layers, one that
goes from the last encoding block to the embedding vector size and then a symmetric
one that goes from said vector to the first decoding block. We experimented with
various embedding vector sizes and ended up using 30 units for the reported results.

• Decoding blocks - these blocks contain two identical convolutional layers to those
described in the encoding blocks. The maxpooling downsampling at the end is re-
placed by a upsampling that precedes the convolutional layers.

• Output layer - since the output of our task was a real valued signal with a single
channel, we employed a sigmoid activation after the last decoding block.

We trained the described model with a mean squared error loss until convergence. All
of the weights in the network were initialized with He-Normal (He et al., 2015) distributed
values. The optimizer chosen for the training was the Adam (Kingma and Ba, 2014) op-
timizer with an initial learning rate of η0 = 10−3 and momentum parameters β1 = 0.9
and β2 = 0.99. Both the input and output size were 128 by 64 pixel images, as discussed
previously.

Software Libraries and Versions All the experiments were designed and executed
using Python 3.6.4 compiled against the Anaconda framework 4.4.10 for Intel Math Kernel
Library Support. General tensor operations were carried out with Numpy 1.14.0 and the
logistic regression models were trained using the scikit-learn library with version 0.19.1.
For the melspectrograms computation we employed the librosa (McFee et al., 2015) module
with version 0.6.1.

For the implementation of the deep neural network models, we used the Keras library
with the TensorFlow backend configuration with respective versions 2.1.6 and 1.8.0. The
GPU version of TensorFlow was used to speed up the experiment execution time. The CUDA
driver library had version 9.0 and the cuDNN Deep Neural Network Library had version 7.0.
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